代码如下:
import org.apache.spark.mllib.classification.LogisticRegressionModel val modelSavePath = "/user/tech/model" val model = LogisticRegressionModel.load(sc, modelSavePath) model.weights # 模型参数w值 model.intercept # 模型参数b值
import org.apache.spark.mllib.classification.{SVMModel, SVMWithSGD} import org.apache.spark.mllib.classification.{LogisticRegressionModel, LogisticRegressionWithLBFGS} import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics import org.apache.spark.mllib.evaluation.MulticlassMetrics import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.util.MLUtils // Load training data in LIBSVM format. // val data = MLUtils.loadLibSVMFile(sc, "/path/to/lr/training_data_with_wordemb") val data = MLUtils.loadLibSVMFile(sc, "/path/to/model/data/train_data_onehot_crossfeature") // Split data into training (60%) and test (40%). val splits = data.randomSplit(Array(0.7, 0.3), seed = 11L) val training = splits(0).cache() val test = splits(1) // Run training algorithm to build the model val model = new LogisticRegressionWithLBFGS().setNumClasses(2).run(training) // Compute raw scores on the test set. val scoreAndLabels = test.map { case LabeledPoint(label, features) => val prediction = model.predict(features) (prediction, label) } // Get evaluation metrics. val metrics = new BinaryClassificationMetrics(scoreAndLabels) val auROC = metrics.areaUnderROC() val auPR = metrics.areaUnderPR() println("Area under ROC = " + auROC) // Save and load model // model.save(sc, "/path/to/model/LogisticRegressionWithLBFGS") // val sameModel = LogisticRegressionModel.load(sc, "/path/to/model/LogisticRegressionWithLBFGS")